A field-theoretic model for Hodge theory
نویسندگان
چکیده
منابع مشابه
A field-theoretic model for Hodge theory
We demonstrate that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory presents a tractable field theoretical model for the Hodge theory where the well-defined symmetry transformations correspond to the de Rham cohomological operators of differential geometry. The conserved charges, corresponding to the above continuous symmetry transformations, obey an algebra that is reminisce...
متن کاملA field theoretic model for the Hodge theory
We demonstrate that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory presents a tractable field theoretical model for the Hodge theory where the well-defined symmetry transformations correspond to the de Rham cohomological operators of differential geometry. The conserved charges, corresponding to the above continuous symmetry transformations, obey an algebra that is reminisce...
متن کاملInter-universal Teichmüller Theory Ii: Hodge-arakelov-theoretic Evaluation
In the present paper, which is the second in a series of four papers, we study theKummer theory surrounding the Hodge-Arakelov-theoretic evaluation — i.e., evaluation in the style of the scheme-theoretic Hodge-Arakelov theory established by the author in previous papers — of the [reciprocal of the lth root of the] theta function at l-torsion points [strictly speaking, shifted by a suitable 2-to...
متن کاملHodge-theoretic Invariants for Algebraic Cycles
In this paper we use Hodge theory to define a filtration on the Chow groups of a smooth, projective algebraic variety. Assuming the generalized Hodge conjecture and a conjecture of Bloch-Beilinson, we show that this filtration terminates at the codimension of the algebraic cycle class, thus providing a complete set of period-type invariants for a rational equivalence class of algebraic cycles. ...
متن کاملHodge Theory for Combinatorial Geometries
The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial geometry if in addition all single element subsets of E are closed. A closed subset of E is called a flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M. The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal C
سال: 2008
ISSN: 1434-6044,1434-6052
DOI: 10.1140/epjc/s10052-008-0758-4